Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides.

نویسندگان

  • Younhee Cho
  • Yanjie Zhang
  • Trine Christensen
  • Laura B Sagle
  • Ashutosh Chilkoti
  • Paul S Cremer
چکیده

The modulation of the lower critical solution temperature (LCST) of two elastin-like polypeptides (ELPs) was investigated in the presence of 11 sodium salts that span the Hofmeister series for anions. It was found that the hydrophobic collapse/aggregation of these ELPs generally followed the series. Specifically, kosmotropic anions decreased the LCST by polarizing interfacial water molecules involved in hydrating amide groups on the ELPs. On the other hand, chaotropic anions lowered the LCST through a surface tension effect. Additionally, chaotropic anions showed salting-in properties at low salt concentrations that were related to the saturation binding of anions with the biopolymers. These overall mechanistic effects were similar to those previously found for the hydrophobic collapse and aggregation of poly(N-isopropylacrylamide), PNIPAM. There is, however, a crucial difference between PNIPAM and ELPs. Namely, PNIPAM undergoes a two-step collapse process as a function of temperature in the presence of sufficient concentrations of kosmotropic salts. By contrast, ELPs undergo collapse in a single step in all cases studied herein. This suggests that the removal of water molecules from around the amide moieties triggers the removal of hydrophobic hydration waters in a highly coupled process. There are also some key differences between the LCST behavior of the two ELPs. Specifically, the more hydrophilic ELP V5A2G(3)-120 construct displays collapse/aggregation behavior that is consistent with a higher concentration of anions partitioning to polymer/aqueous interface as compared to the more hydrophobic ELP V(5)-120. It was also found that larger anions could bind with ELP V5A2G(3)-120 more readily in comparison with ELP V(5)-120. These latter results were interpreted in terms of relative binding site accessibility of the anion for the ELP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-chromatographic Purification of Recombinant Elastin-like Polypeptides and their Fusions with Peptides and Proteins from Escherichia coli

Elastin-like polypeptides are repetitive biopolymers that exhibit a lower critical solution temperature phase transition behavior, existing as soluble unimers below a characteristic transition temperature and aggregating into micron-scale coacervates above their transition temperature. The design of elastin-like polypeptides at the genetic level permits precise control of their sequence and len...

متن کامل

The inverse and direct Hofmeister series for lysozyme.

Anion effects on the cloud-point temperature for the liquid-liquid phase transition of lysozyme were investigated by temperature gradient microfluidics under a dark field microscope. It was found that protein aggregation in salt solutions followed 2 distinct Hofmeister series depending on salt concentration. Namely, under low salt conditions the association of anions with the positively charged...

متن کامل

Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers

Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val-Pro-Gly-Xaa-Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that c...

متن کامل

Characterisation of hydration and nanophase separation during the temperature response in hydrophobic/hydrophilic elastin-like polypeptide (ELP) diblock copolymers.

To understand the complex nanoscale dehydration process during the lower critical solution temperature (LCST) based inverse phase transition of a class of thermoresponsive biopolymers, diblock elastin-like polypeptides (ELPs) were investigated by spin probing continuous wave electron paramagnetic resonance (CW EPR) spectroscopy. The diblock copolymers composed of a hydrophobic block and a hydro...

متن کامل

Quantitative model of the phase behavior of recombinant pH-responsive elastin-like polypeptides.

Quantitative models are required to engineer biomaterials with environmentally responsive properties. With this goal in mind, we developed a model that describes the pH-dependent phase behavior of a class of stimulus responsive elastin-like polypeptides (ELPs) that undergo reversible phase separation in response to their solution environment. Under isothermal conditions, charged ELPs can underg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 112 44  شماره 

صفحات  -

تاریخ انتشار 2008